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We use a mathematical isomorphism between the one-dimensional exclusion 
process and the two-dimensional stochastic Ising model in the low-temperature 
limit to describe the typical instantaneous shape of a supercritical droplet. We 
derive, specifically, the exact asymptotic distribution of the boundaries of a 
( + 1 ) spin region, confined to Z 2 and subjected to a positive magnetic field. In 
an appropriate scaling, the boundary distribution converges to a deterministic 
continuum limit. 

KEY WORDS: Exclusion process; Ising models; Glauber dynamics; droplet 
shape. 

1. I N T R O D U C T I O N  

Let qt be  the o n e - d i m e n s i o n a l  a s y m m e t r i c  exc lus ion  process  in  X =  (0, 1 }z  

c o r r e s p o n d i n g  to the s e m i g r o u p  St (Fel le r  p rocess )  wi th  g e n e r a t o r  

( c f ) ( , )  = 
n(k) = 1 
n(l)=0 

p(k , / ) I f ( r / k ,  ) - f ( q ) ]  

where  r/k1, k, l ~ Z ,  is the c o n f i g u r a t i o n  o b t a i n e d  f rom q by  e x c h a n g i n g  k 

a n d  l. ~) The  t r a n s i t i o n  p robab i l i t i e s  are  def ined  by  

p ( k , k + l ) = p ,  p ( k , k - 1 ) = q ,  p + q = l  

a n d  p(k,  l) = 0 otherwise.  
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We assume that the probability measure (state) v on X is initially con- 
centrated on the configuration 

t /~  k>ok~<O 

and consider its evolution vt = S, vo in time. 
The system behaves differently for r = p/q larger or smaller than one. If 

r > 1, the particles diffuse to the right with a drift linear in time, and the 
system does not approach any stationary state starting from ~/o. (There is, 
however, a well-defined asymptotic distribution if the process is viewed 
from a frame in uniform translation/2)) If r < 1, v, converges weakly to an 
invariant product state. (3) 

v~(r/)= I ]  P(1)" I-[ (1--0(l))  (1.1) 
l : r / ( l )  = 1 / : r / ( / )  = 0 

with density 

p(1)=v~{q:q(/)= l }=r'(l +r') i (1.2) 

The model has two interesting physical interpretations. The second 
will be the main object of our study. 

(i) Particle Mot ion in an External Field 

The process describes the random walk (with exclusion) on Z of 
charged particles in a constant electric field E. With Hamiltonian H 0 / ) =  
--EZk kq(k) and transition probabilities defined by the detailed balance 
condition p(k, l) exp(- f i l l (q) )  = e x p ( -  flH(~/kl)) p(l, k), one finds 

r=P=e pE 
q 

A positive field E > 0  ( r>  1) generates a drift to the right. For E < 0 ,  the 
stationary state v~ is the Gibbs state with respect to the Hamiltonian H(q) 
and p(k) is the corresponding equilibrium density profile. 

The case E < 0 could also be interpreted as the interface distribution of 
a fluid filling a half-space and subjected to a constant gravitational field. 

(ii) Droplet  Shapes under Glauber Dynamics in the Low-Tem-  
perature Limit 

To each unit square of Z 2 we associate an Ising spin and consider the 
spin flip process cnt in s  z2 with Glauber dynamics, in the 
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presence of a constant magnetic field h. The generator of the process is 
defined by 

(Gf)(co) = ~ c(k, co) [f(cok) -- f(CO)] 
k 

where Cok is the configuration obtained from co by flipping the spin at k. (4) 

The speed functions c(k, co) satisfy the detailed balance condition with 
respect to the Ising Hamiltonian H(co)= --J~<k,t> co(k) co( l ) -h  ~k co(k) 
where the summation ( , ) is on next-neighbor sites. A possible choice is 
(up to a factor) 

c(k, Co)~ [1 - t a n h  2 f i J (2 -  s(k, Co))] [1 -~Co(k)] 

where ~ = tanh fih and s(k, co) is the number of neighboring spins to k with 
sign opposite to co(k). 

At very low temperature (fi>> 1), the speed functions for s = 0 ,  1 
become negligibly small as compared to those for s >~ 2 which remain of the 
order of (1-aCo(k)). We therefore introduce the limiting process with 
speed functions 

0 s < 2  

c*(k, o9)= �89 s = 2  

1 - ~Co(k) s > 2 

letting fl ~ ~ ,  h ~ 0 with ~ = tanh(flh) fixed in c(k, Co). 
Assume that the initial state #o on s is concentrated on the con- 

figuration 

Coo(k)={ 1 k e Z  2 
- 1 otherwise 

Geometrically, Coo describes a ( + 1) spin droplet filling the first quadrant of 
Z 2. Since the s < 2 events are forbidden, the droplet remains confined to the 
positive quadrant throughout its evolution and flips take place at its boun- 
dary only. Moreover, events with s > 2 will never occur when starting from 
co o. Hence all flips are s =  2 events and lead with probability �89 -c~) to a 
decrease and with probability �89 + a) to an increase of the droplet area by 
one unit. 

The case a < 0 describes the unrestricted shrinkage of the ( + )  spin 
region in a negative magnetic field. The expected area of erosion relative to 
the initial droplet area in Coo grows linearly with time. (2) In the case ~ > 0 
(positive field) we expect that the ( + )  region, which remains confined to 
the positive quadrant, admits a unique asymptotic stationary distribution. 
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The main purpose of this note is to study this distribution and the 
corresponding typical shape of the droplet. This can be done as follows. 

Any configuration co which can be reached from coo is characterized by 
the boundary which separates the two spin regions, i.e., by a sequence 
{Bk(a~),k~Z+ } of nonnegative integer-valued random variables, non- 
increasing in k, and the area of erosion of the ( + ) region in configuration 
co is A(co)= Zk~176 Bk(co) (cf. Fig. 2). 

We can now define an isomorphism between the process cot governed 
by c*(k, co) with initial configuration coo and the exclusion process t/t with 
initial configuration (1'2) t/o: To a ( + ) ~ ( - ) (resp., ( - ) ~ ( + )) spin flip 
corresponds a right (resp. left) move of a particle on Z with probability 
p = �89 - e) (resp., q = �89 + e)); hence 

p 1--~  
r =  - - -  ( 1 . 3 )  

q 1+or 

It can then be verified inductively that the correspondence between co and t/ 
is characterized by the relation 

Bk+l (co)=k  +ra in  { n ' ~  r / ( / )=k}  (1.4) 
l > n  

We note that minn{Zt>,, t/(l) = k }  is the position in t/ of the particle 
which has k right neighbors. Since, by exclusion, particles do not cross, this 
particle already had k right neighbors initially, hence was located at - k  in 
t/o. We therefore conclude from (1.4) that the boundary variable Bk(co) 
equals the total distance traveled by the particle originally located at - k ,  
and that the area of erosion A(co) equals the sum of distances traveled by 
all particles from their initial positions. 

In Sec. 2, we derive the full distribution for the random variables A(co) 
(Proposition 2.2) and Bk(co ) (Proposition 2.8). A brief discussion of the 
boundary process in its own right will also be given (Proposition 2.15). In 
Sec. 3, we introduce a scaling of the lattice spacing and the magnetic field 
h, which leads to a deterministic continuum limit of the model 
(Proposition 3.6). 

From a physical viewpoint, it is important to remark that at low, but 
nonzero, temperature, the s =  1 processes have always a nonvanishing 
small probability. These processes, which are neglected in the speed 
functions c*(k, co), are responsible for the formation of "protuberances" 
which enable the droplet to grow beyond its initial quadrant. For small T 
one should therefore distinguish two time scales for the dynamics of a 
supercritical droplet, a slow time scale for the global growth of the droplet 
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involving s -- 1 processes, and a fast time scale of the s = 2 processes gover- 
ning the instantaneous shape of the droplet. The results of the paper will 
describe adequately the typical instantaneous shape, as illustrated by the 
computer-generated picture of a droplet initially confined to a square, 
under low-temperature Glauber dynamics (cf. Fig. 1). 

A description of droplet growth (in a positive field) requires taking the 
s = 1 processes into account, in one way or another. If one wants to main- 
tain a bijective map between the spin flip processes and the particles on a 
line, one has to relax the exclusion restriction. A simple approximation to 
the Glauber dynamics including the s = 1 events corresponds to the process 
on the line where particles are allowed to pile up at any one site, but 
without crossing each other (in order to preserve uniqueness of the map 
without tagging the particles). Defining the correspondence between 
traveling distance and boundary coordinate as before, one checks that to 
each particle configuration now corresponds a one-valued (SOS) function 

Fig. 1. 
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on Z+ which, however, need not be monotonic and positive. The droplet 
can therefore grow into the right lower quadrant. This will be the subject of 
a further investigation. 

2. B O U N D A R Y  DISTRIBUTION 

Let / ~  be the equilibrium measure on the configuration space 12 
(corresponding to v~ on X). 

Here and henceforth we introduce the notations 

a(n) = Prob (A(co) = n), bk(n) = Prob (Bk(co) = n), n e Z 
/a~ /ace 

for the equilibrium densities, and 

~(s)= ~ a(n)s", /~k(s)= ~ bk(n)s", s ~ +  
n = O  n = O  

for the equilibrium generating functions of A(co) and Bk(co ). Moreover, we 
u s e  

bkl...kN(nl"''nN) = Prob (B~l(co) = nl ,..., B~u(co) = nN) 
/a~ 

for the joint N-point density of Bk(co ), and define 

7z(m,n)= f l  ( 1 - r  l) 
1--m 

I . e mma  2.1. At equilibrium, all configurations co with erosion 
A(co) = n have weight a(0)r". 

Proof. In the exclusion picture, erosion from coo corresponds to total 
displacement of particles from r/o. Let t/, q' correspond to co, co' with 
erosions n and n + 1 in such a way that q' can be reached from q in a single 
step. This step then necessarily consists in a particle moving from some 
k ~ Z  to k + l .  Let A={l :q( l )=l} ,  B={l:q(l)=O}, keA,  k + l ~ B .  
Then, by (1.1) and (1.2), 

voo(q) = c l~ p(l) [I (1 -p(l))  
A B 

v~(~ ' )=c  1-I p(O lq (1 - p(t)) 
A • { k + l }  {k} B u { k } - - { k + l }  

p(k+l )  1 -p (k )  
= v~(~)  v~(~)  r 

1 - p(k  + 1) p(k)  

Since voo(qo)= #~(co0)= a(0), the result follows by induction. | 
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Proposi t ion  2.2. At equilibrium, A(~)  has 

density: a(n)  = pnrnTr(1, ~ ) 

expectation: E(a )  = ~,~= 1 lrl(1 -- r l) 1 

variance: V(a)  = SF= 212rl(1 - r t) 2 

where p ,  is the number of unrestricted partitions of the integer n. 

Proo f .  The unique configuration with erosion n = 0 is ~Oo, so 

a(O ) = #o~(~Oo) = voo(qo) 

o 

= c  H p( l )  ( I - p ( / ) ) =  (~(1, oo)): (2.3) 
oo 1 

The number of contours with erosion n equals the number of nonincreasing 
sequences B~ with sum n which in turn equals Pn. By Lemma 2.1, each con- 
tour with erosion n contributes a weight a(0) r" so that 

a(n)  = p , a ( O )  r n (2.4) 

The generating function for unrestricted partitions is (Ref. 6, p. 111) 

0(3 
1 

0 1 

Hence the generating function of a(co) is 

fi(s) = ~ p , a ( O )  rns ~ = a(O) ~(rs )  
n ~ O  

Since 

(2.5) 

1 a(n) = f i ( s ) l s =  1 = a ( O ) / ~ ( r )  
0 

we find 

-fi a(0)=/~(r)  1_  (1- rZ)=rc(1 ,  oe) 
1 

(2.6) 

and. from (2.4), 

a ( n ) =  pnrnrc(1, oe ) 
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By differentiating the generating function (2.5), we also obtain 

and 

oo 

E(a) = 6'(S)is= 1 = }-", l /(1 - / ) - - 1  
1 

V(a) = (6"(s) + 6 ' ( s ) -  (6'(s))2),=, = ~ 12/(1 - r') 2 [i 
2 

As a side result we observe that the normalization constant c in (1.1) 
as obtained from (2.3) and (2.6) is 

e=27c 1(1, oo) (2.7) 

Propos i t ion  2.8. At equilibrium, the boundary variables Bk(~o) 
have densities 

b~(n)=rknrc(k, oo)~z l(1, n) 

and joint N-point densities (N>~ 2) 

bkl---kN(n,'' 'nu) 

N - I  n 
7___ r k u n N +  ~rn=lkm(nm--  re+l, X ~(k, oo ) 7~-1(1, F/N)  

N t 

x l-[ [ z ( k m + l - k m ,  k m + l - k m + n m - n m + l - 1 ) ~  l ( l 'nm--nm+l)]  
m = l  

ProoL Let us consider in detail the case N = 2. The cases N = 1 and 
N > 2 can easily be established by analogy. 

By Lemma 2.1 and formula (2.6), the weight of the boundary limiting 
the three regions I in Fig. 2 is 

~z(1, oe)r  k2n2+ (k~ 1)(hi n2) 

Denote by ql a) the number of partitions of l into parts not exceeding a, and 
by q~a,b) the number of partitions of l into exactly b parts, none exceeding a. 
It is known (Ref. 6, pp. 111, 153) that the corresponding generating 
functions are 

gl(a)(r)=~-l(1, a), gl(a'b)(r)=~(a,a+b--1)rc l(1, b) rb (2.9) 

We now observe that the numbers of admissible boundaries limiting an 
area l in regions II, III, and IV of Fig. 2 are, respectively, 

q~kl ,), q~-2), q}k2-k,.,,-2~ 
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Bk(m)' 

ql, I 

~2 

Fig. 2. 

> 

k 

The total weight of all admissible boundaries  is therefore 

7~(1, O0)yk2n2+(kl 1)(nl n2) qlkl 1)El q~n2)rl 

I 

= re(l, oo) r k2n2+ (~'- 1)(hi ,=)t~(ki 1)(r ) . 0(nZ)(r ) . 0(k2 kl,n I n2)(~ ) 

Inserting (2.9) we find 

bk~k2(nl n=) = rk2n2 + kl(nl-  n2)7~(kl , 00)  7 r - l ( 1 ,  n2) 

xr t (k2-k l ,  k 2 - k  l + n l - n 2 - 1 ) r c  l(1, n l - n 2 )  

This proves the proposi t ion for N =  2. | 
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Proposition 2.8 permits, at least in principle, a complete probabilistic 
analysis of the droplet shape at equilibrium. We conclude this section by a 
simple application which consists in viewing the sequence {Bk(co), k e Z+ } 
as a discrete "time" k random process in its own right. 

Let k l < k 2 < " "  < k u _ l < k  N and nl>~n2>~ " "  ~ F l  N I ~ F I N .  The 
conditional probability in state #o  that BkN(e))=nN, given that 
Bki(C0) = nki, i=  1 ..... N--  1, is 

P(kN, nNlkN--1, nN 1 ..... kl, n l ) -  bkl- .ku(nl "''nN) 
bkl. . .kN_l(nl"' 'nu_l) 

and the probability that BkN(Og)=n N conditioned on BkN_a(fO)=nN 1 
alone is 

P(kN, nNIkN 1,nN 1)= 
b~N 1(giN--inN) 

bku l(nu 1) 
(2.10) 

A straightforward calculation shows that both expressions equal 

r(~:N--ku_l)nU(1 _ r  N) 1 7 t ( kN_ku_ l  ' k N _ k N  1 + n u - 1 - - n N - -  1) 
r 

XT~(1, nN_l - -nu)  (2.11) 

This implies that the chain {Bk(o))} is Markov. 
Relations (2.10) and (2.11) also demonstrate that P(k2n2]klnl) only 

depends on the difference A k = k 2 - k l  (and nx,n2). Hence the Markov 
chain is homogeneous in "time" k with general transition probabilities 

P ~k(n21n~ ) =-- P(kl + Ak, n 21kl, n l) 

=r~k'"27C(1, nl) ~ 1(1, n2) 

xrc(Ak, A k + n l - n 2 - 1 ) ~  1(1, n l - n 2 )  (2.12) 

The one-step transition matrix 

Pl(n2lnl)  = rn2TC(1, nl) zr-1(1, n2) O(n I -- n2) (2.13) 

(the Heaviside function 0 has been added to include the case nl <n2) 
admits 

p(n) = 6,0 (2.14) 

as the unique normalized right eigenvector. Geometrically, this means that 
the boundary must eventually converge to the x-axis for large k. 
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For nl = n2 = n > 0, (2.12) reduces to 

P ~k(nln) = r ~kn 

The likelihood of a horizontal plateau in the boundary thus decreases 
exponentially fast with its length Ak. Intuitively this indicates that large 
deviations from convexity of the boundary tend to be rare. 

We summarize our results in the following: 

Proposition 2.15. At equilibrium, the discrete boundary process 
{Bk(cn)} is a homogeneous Markov chain with (one step) transition matrix 
(2.13) and unique (universally attractive) stationary state (2.14). 

3. C O N T I N U U M  LIMIT 

Consider the exclusion process on Z~ = {n3, n E Z )  and the spin 
system on Z~, with lattice spacing A. It is interesting to study the dis- 
tribution of droplet shapes in the limit A ~ 0. 

The typical linear size of an isolated ( + )  droplet in a configuration of 
( - ) spins, in the presence of a small positive magnetic field h, is known to 
be of the order of h - l .  (5) To keep the physical size of the droplet invariant 
as A - ,  0, we let h converge to zero linearly with A. Since c~ = tanh(flh) is 
proportional to h for small fields, the precise definition of the limit is 

a 
A ~ 0 ,  a ~ 0 ;  n A = x  and ~ = 7 > 0  fixed (3.1) 

We begin with a heuristic derivation of the average stationary droplet 
shape in this limit. Equations (3.1) and (1.3) imply 

= { 1 -  AT ~ x/~ 
(r~)" \1 + ATJ --* e 2~x, A ~ 0 

and the density (1.2) converges to 

p ( x )  = e 2'x(1 + e 2,x) 1 

From (1.2) one infers that the expected asymptotic locatioi, u of a particle 
initially located at - x  satisfies 

x = p(~) d~ = log(1 + e -27u) (3.2) 

since the expected final number of right neighbors equals the initial number 
x of right neighbors (by exclusion). 
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According to the general translation code between the exclusion and 
the low-temperature process, the expected boundary height y equals the 
distance x+u  traveled by the particle from - x  to u. Solving (3.2) for u 
yields 

1 
y(x) = x + u = -~---log(1 - e-2~x) (3.3) 

z7 

or, in a form which exhibits the symmetry of the boundary curve relative to 
the 45 ~ axis, 

e -  2-~x _{_ e -  2,/y = 1 

Next we show that, in the limit A ~ 0, the boundary distribution is 
concentrated on the curve (3.3). Let b~(n) be the density of Bk(O)) 
parametrized by r~, i.e., by Proposition 2.8: 

b~(n) = (r ~) k" rc~(k, oo ) zt~-l(1, n) (3.4) 

with n~(m, n ) -  ]--IT=m ( 1 -  r~). We show that the expectation functional 

E~(g )=  ~ g(nA)b~(n), x=kA (3.5) 
n = O  

defined for suitable test functions g on the range Z~ of Bk(co), converges 
weakly to the Dirac measure 6y(x)(g). 

P r o p o s i t i o n  3.6. For any function gED~(O, ~)  (the space of 
infinitely differentiable functions with compact support in [0, ~) ) :  

lim E](g)= g(y(x)) 
A ~ O  

with y(x) the expected boundary (3.3). 

ProoL From the normalization relations 5Z, b~(n)= 1 for the den- 
sities (3.4) follows 

o = y~ b L , ( , )  - F~ b~(, , )  
n n 

= ~ ( k  + t, ~ )  Y~ (r~ ~ + '~~ - r~') ~ -  ~(1, ,,) 
n 

+(~Ak + l, ~ ) - ~ A k ,  ~))  ~r~"~2~(1, n) 
n 
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for any fixed l~ Z+ .  Using the identity 

n~(k + l, oo ) -  rc~(k, oo) 

= hal(k,  k + l -  1)(1 -tea(k, k + l -  1)) tea(k, ~ )  

and normalization once again, we obtain 

0 = n ~ l ( k ,  k + l -  1 ) I ~  ( r ~ -  1)r~nrc(k, Go)re 1(1, n) 

+ l- tea(k ,  k + l -  1)1 

= n~- l(k, k + l -  1 ) [E~(r~) - ~z(k, k + l -  1 )] 

For small J we set r~',-~exp(-2y Am) and kJ =x, nZ = y. Hence 

E~(e - 27yl) = (1 - e -  2~)(1 - e -27x(1 + ~)).. .  (1 - e -  2~x(1 + (l- 1)~)) 

(1 - e - 2~)l = exp[/log( 1 - e -  2rx)] = e -  2~y(x)l 

The proposition is thus proved for the sequence gt(y)=exp(-27yl)  of 
exponentials, and the remaining argument rests on the Weierstrass 
approximation theorem according to which any g eD~[O, oo) can be 
uniformly approximated by linear combinations At= o cl gl(Y). (This can be 
verified by substituting y =  -(1/27) logz; 0<z~< l ) .  | 

We conclude this section by a direct argument showing that the den- 
sities b~(n) are peaked at y(x) in the limit A ~ 0. 

For small A, (3.4) implies 

log b~ (n)~ kn log(1 - 2 7 A)+  ~ log(1 - e-2~al)_ ~ log(1 - e-2~,)  
l = k  / = 1  

1 
~~ G(x, y) 

with 

G(x, y ) =  -27xy+ f ~  d~ log(1 - e-2~r - fo y d~ l o g ( l -  e -27r 

Since by (3.3) 

8 
7-- G(x, Yo) = - 2 y x  - log(1 - e -2~y~ 
cy 
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vanishes if and only if yo = y(x), the density G(x, y) has a unique 
extremum in y for fixed x, and since 

0 2 

~01~ oy2G(x, yo)=27e 2ey~176 

this extremum is a maximum and the normalized densities b~(n) behave, 
for small A, as the Gaussians, 

b~(n) ~ (2ZCao A) -('/2~ exp ( (Y~-ao ~ -  Y~ 

This shows that the mean-square fluctuations of the boundary about y(x) 
are of the order cr 0 A as A--+ O. 

It is also easily checked that the exponential generating function 

?ta(s) = ~ aa(n) exp(n Ais) 
n = 0  

for the area n A 2 of erosion converges to 

exp [S fo Y(X) dx 1 

and that the density a~(n) is therefore concentrated on the area ~ y(x) dx 
in the limit A ~ 0. 
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